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Abstract

The performance of principal component analysis (PCA) for the evaluation of dissolution profiles is examined and
compared with other methods such as the similarity factor and the calculation of the area under the curve. Both
simulated and real data from the pharmaceutical industry are used. The PCA scores plots of the dissolution curves
provide information about the between- and within-batch variations. Differences in level or shape can be observed in
the first two principal components (PCs). Irrelevant irregularities, which have a strong influence on the similarity
factor, are neglected in PC1/PC2. To detect outliers in a set of dissolution curves, PCA was preferred above
Hotelling’s T2 test. In general, PCA is found to be a useful technique to examine dissolution data visually, but
however, it does not contain criteria to decide if batches are similar or not. This can be done by combining PCA with
the resampling with replacement or bootstrap method to construct confidence limits. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The evaluation of dissolution profiles is a very
important quality measure for solid oral drug
delivery systems (tablets and capsules). It is used
during the development of the galenic formula-
tion, as quality control during the production, for
evaluating the stability of the tablets or the cap-

sules and as an evaluation for comparing new or
generic formulations with an existing one. It can
also provide a basis for achieving an in vivo–in
vitro correlation. The Food and Drug Adminis-
tration (FDA) allows the use of only in vitro
dissolution testing to ensure the product quality in
case of certain scale-up and post approval
changes (SUPAC) like manufacturing site
changes, increase or decrease of batch size and
small quantitative changes in excipients (FDA
Guidance for Industry, 1995, 1997). For most
dissolution tests, the dissolution characteristics of
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the test batch have to be compared with those of
the reference batch. The simplest way to do this is
by checking whether after a certain time a mini-
mum percentage of the active is dissolved in the
dissolution medium. Although the use of this
single-point dissolution test may be sufficient for
highly soluble and rapidly dissolving drug prod-
ucts, the FDA recommends measurements at
more time points, especially in the case of slowly
dissolving or poorly water-soluble drugs. Dissolu-
tion curves with an equal dissolution after the
predetermined time can have a different shape
before reaching that time point, which, from a
pharmacokinetic point of view, can lead to differ-
ent plasma concentration profiles in the patient.

From a computational point of view, it is more
complex to compare multiple time points or com-
plete dissolution profiles than a single-point test.
In the literature different methods are described
for comparing dissolution profiles. Polli et al.
(1997) divided them into ANOVA-based, model-
independent and model-dependent techniques.
Depending on the method used for the compari-
son, different results can be obtained.

The ANOVA-based methods, which can also be
regarded as model independent, test the dissolu-
tion profiles for differences in level and shape
(Mauger et al., 1986). These methods were found
to be overly discriminating (P values B0.0002)
and investigated statistical rather than pharma-
ceutical equivalence (Polli et al., 1996). The differ-
ence factor f1 and similarity factor f2 were
introduced by Moore and Flanner (1996) and
discussed further in other papers (Polli et al.,
1996; Shah et al., 1998; Anderson et al., 1998;
O’Hara et al., 1998). Both the factors are recom-
mended by the FDA for comparison of dissolu-
tion profiles of solid oral dosage forms, but the f2

factor is preferred (FDA Guidance for Industry,
1995, 1997). Values of f1 between 0 and 15 and of
f2 between 50 and 100 indicate equivalent dissolu-
tion profiles. The indices of Rescigno (1992) are
closely related to the fit factors of Moore and
Flanner. Tsong et al. (1996) applied a multivariate
approach, namely the Mahalanobis distance
(MD) computed between the mean of the refer-
ence batch and the mean of the new batch using
the pooled variance–covariance matrix. The MD

as a distance measure has the advantage over the
Euclidean distance (ED) in that the correlation
between the time points is taken into account. The
test as proposed by Tsong et al. however has the
disadvantage that the pooled variance–covariance
matrix is used. This means that it is assumed that
the variance–covariance matrices of both batches
are the same, which in practice is often not the
case. Another way of evaluating dissolution
curves is to compare their dissolution efficiencies
(DE) (Anderson et al., 1998). In fact, this method
calculates and compares the areas under the curve
(AUC). Depending on the way of computing the
AUC, the method can be regarded as model
dependent or independent.

In the model-dependent techniques, the mea-
sured points of the dissolution curve are fitted to
functions like the Weibull, logistic, Gompertz,
quadratic, Hixson–Crowell or Higuchi. To deter-
mine the parameters, non-linear regression (NLR)
can be used. Polli et al. (1997) compared different
fit functions and stated that the suitability of the
functions strongly depends on the shape of the
dissolution profiles and that not one model can be
suggested for all types of dissolution curves. The
model used for the test set may even not be the
same as that for the reference set. The Weibull
function seems to be one of the better methods to
fit the different types of dissolution profiles.

In this paper we evaluate the use of PCA
(Vandeginste et al., 1998) for exploring the data.
The results of this method and the similarity
factor f2 are compared for both simulated and
real data.

2. Methods

2.1. The similarity factor

The similarity factor f2 introduced by Moore
and Flanner (1996) can be computed as:

f2=50× log
!�

1+
1
n

%
n

t=1

wt(Rt−Tt)2n−0.5

100
"

(1)

with Rt and Tt being the percentages of active
dissolved at time t (for t=1, 2, …, n) for, respec-
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tively, the reference and the test or new formula-
tion. The measurements at each time can be
weighted according to their importance in the
dissolution curve using the optional weight factor
wt. Usually each time point is weighted equally
(wt=1). The new and the reference formulation
are considered to be equal when f2 is higher than
50. This value was determined empirically by con-
sidering that there may be no more than a 10%
average difference at any sample time point. It is
also recommended not to include measurement
times at which the dissolution curves have a disso-
lution higher than 85% since the number of such
sample points influences f2 (Shah et al., 1998). The
advantage of the f2 factor is that it is easy to
compute. However, this factor does not take into
account the within-batch variability or the corre-
lation between the data.

2.2. Principal component analysis

Principal component analysis (PCA) is a tech-
nique that provides a way to explore multivariate
data. Many algorithms are described to perform
PCA. In this article, the singular value decompo-
sition (SVD) is used on Xc, the column centred
matrix of X:

Xc(m×p)=X−X( =U(m×a)L(a×a)VT(a×p)

=T(m×a)VT(a×p) (2)

with m being the number of objects (here, the
number of tablets measured in the batch), p the
number of original variables (here, the number of
time points) and a the number of principal com-
ponents (PCs), with a=m−1 if m5p or a=p if
m\p. U is the unweighted (normalised) score
matrix and T is the (m×a) weighted (unnor-
malised) score matrix with the PCs in the
columns. V is the (p×a) loading matrix with a
column vectors, the so-called eigenvectors, con-
taining the loadings of the original variables on
the different PCs. L is a (a×a) diagonal matrix
with the singular values lj (for j=1, 2, …, a) as
elements on the main diagonal. The singular val-
ues are the square roots of the eigenvalues. l1 is
associated with the first principal component
(PC1) and is related to the amount of variance
explained by PC1. By definition l1]l2] ···]la

so that the principal components can be said to
describe decreasing amounts of variance (or infor-
mation) in X. A measure to indicate the percent-
age variance explained by each principal
component is the contribution which is calculated
as:

ContribPCa=
la

2

%j=1
a l j

2

(3)

The first PCs will contain all the real information
contained in the original data matrix X, while the
remaining PCs contain only noise (random varia-
tion). These first r (rBmin (m, p)) PCs containing
information are called significant or important
PCs while the remaining (a−r) PCs are called
residual PCs (Eq. (4)).

Xc(m×p)=T(m×r)VT(r×p)

+T(m(a−r))VT((a−r)p)

=T(m×r)VT(r×p)+E(m×p) (4)

where E is the matrix of the residuals.
Different methods such as the SCREE and

LEV plot (Jackson, 1991), leave-one-out cross-
validation (LOOCV) (Eastment and Krzanowski,
1982), Malinowski’s IND (Malinowski, 1977,
1991) and REV functions (Malinowski, 1987;
Faber and Kowalski, 1997) and the permutation
test (Dijksterhuis and Heiser, 1995) are described
in the literature to determine r. Different methods
however often lead to different numbers of impor-
tant PCs (Jackson, 1991), so that this determina-
tion is often uncertain.

2.3. Hotelling’s T2 test

Hotelling’s T2 test (Jackson, 1991; Tracy et al.,
1992) is based on the use of the squared Maha-
lanobis distance (MD) which is computed as:

MDi
2= (xi− x̄)Cx

−1(xi− x̄)T (5)

with xi the vector corresponding with dissolution
profile i, x̄ the vector of the means and Cx the
variance–covariance matrix:
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Cx=
1

m−1
Xc

TXc (6)

with Xc the column centred matrix of X, i.e.
(X−X( ).

The test can be used to detect outliers from the
reference batch. Since the squared MD is always
positive, usually only the upper confidence limit
(TUCL

2 ) is defined:

TUCL
2 $

(m−1)2

m
b(a;p/2,(m−p−1)/2) (7)

This limit is built using the b-distribution, which
takes into account the fact that, if an outlier is
present, the estimated mean x̄ and the variance–
covariance matrix Cx for computing the MD, are
already influenced by it. TUCL

2 can also be com-
puted using the F-distribution:

TUCL
2 =

(m−1)2

m
×

(p/(m−p−1)F(a;p,m−p−1)

1+ (p/(m−p−1))F(a;p,m−p−1)

(8)

with F(a;p,m−p−1) the tabulated value of the F-dis-
tribution at significance level a and p and m−
p−1 degrees of freedom. The time point 0 may
not be included in the computations since it con-
tains no information (all percentages dissolved are
equal to zero) while it anyway influences the
number of degrees of freedom for building the
limit.

Hotelling’s T2 test is also used to check whether
the measurements of the test batch have a squared
MD towards the central point of the reference set
which is smaller than the limit defined as:

TUCL
2 =

p(m−1)(m+1)
m(m−p)

F(a;p,m−p) (9)

For calculation of the MD of the test set measure-
ments, x̄ and Cx of the reference set are used in
Eq. (5).

It is also possible to use Hotelling’s T2 test
following PCA. The aim of using the MD in the
PC space is no longer to take into account the
correlation between the variables (PCs are by
definition orthogonal), but Hotelling’s T2 test has
the property that each PC is weighted equally
since the normalised scores are used:

Ti
2= (m−1)ui(ui)T= (m−1) %

a

j=1

(uij)2 (10)

with ui the normalised score vector of object i. Ti
2

can be calculated using all a PCs, but mostly only
the r significant PCs are monitored (the total
number of PCs a in Eq. (10) is then replaced by
r).

2.4. Area under the cur6e

The area under the curve (AUC) can be com-
puted for each dissolution profile as the sum of
the areas of the trapezia formed by the points
(ti−1, 0), (ti, 0), (ti−1, yi−1) and (ti, yi):

AUC= %
p

i=1

(ti− ti−1)(yi−1+yi)
2

(11)

with ti the dissolution time and yi the percentage
of active dissolved at that dissolution time.

2.5. Resampling with replacement or
bootstrapping

Starting from a matrix X (m×p), a new ran-
dom matrix X1 (m×p) is generated by drawing
with replacement m rows from the original matrix
X (Efron and Tibshirani, 1986; Shah et al., 1998).
When this procedure is repeated n times (e.g.
1000), it results in n matrices (X1, X2, …, Xn), all
with size (m×p). After calculation of the vector
of column means for each matrix, a (n×p) matrix
is formed with these vectors.

2.6. Software

All programs used for the above-described
methods were written in MATLAB (Version 4.0,
the MathWorks, Natick, MA, USA).

3. Data

Data A were obtained from the industry and
contain the dissolution profiles of four batches
measured from tablets and capsules of a drug A.
Each batch contains 12 dissolution profiles mea-
sured at 15, 30, 45 and 60 min with a USP
apparatus II (rotating paddles) at 50 rpm in 900
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ml of dissolution solution and using sinkers. Two
batches contain the dissolution profiles from the
original or reference tablets (Ar1 and Ar2) and
the two other batches from the reformulated or
test capsules (At1 and At2), all tested under the
same conditions. The dissolution profiles of the
reference set Ar1, together with the mean profiles
for Ar1 and At1 are shown in Fig. 1.

Data B were published earlier by Tsong and
Hammerstrom (1994). Twelve units of both a
reference (Br1) and a test batch (Bt1) were mea-
sured at seven different times (1, 2, 3, 4, 6, 8 and
10 h). Fig. 2 shows the dissolution profiles of Br1
together with the mean profiles of Br1 and Bt1.

4. Results and discussion

4.1. The similarity factor

First the dissolution profiles of the reference
tablets Ar1 and the reformulation capsules At1

are compared. For the similarity factor f2 the
advice not to include points with a dissolution
higher than 85% (Shah et al., 1998), is not fol-
lowed since at most time points the dissolution
profiles reach a higher dissolution (see Fig. 1) and
there still is a relatively high variation between the
dissolution profiles. To compare the reformulated
batch with the reference batch, f2 is computed
using their mean dissolution profiles. The f2 com-
puted in this way has a value of 83, which is
clearly higher than the critical limit of 50 so that
the two batches can be considered not to be
pharmaceutically different. Also, when each of the
dissolution profiles of the reformulated capsules is
compared separately with the mean dissolution
profile of the reference batch, all profiles pass the
requirement ( f2\50).

Compared with data A, data B (Br1 and Bt1)
are measured at seven instead of four time points
and, for the reference batch, only at the last time
point the mean percentage dissolved is higher
than 85%. The f2 calculated using the mean disso-

Fig. 1. The 12 dissolution profiles of the tablets of the reference set (Ar1) with dissolution profile 8 indicated with the (—�—)
symbol and two dissolution profiles (2 and 7) of the capsules of the reformulated batch (At1) indicated with the (- -*- -) symbol.
The solid bold line represents the mean reference profile and the dashed bold line the mean test profile.
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Fig. 2. The dissolution profiles of the reference batch Br1. Dissolution profile 2 is indicated with (—�—) and profile 9 with (- -*-
-). The solid bold line represents the mean reference profile and the dashed bold line the mean test profile.

lution profiles has a value of 64. Since this value is
higher than the limit of 50, the two batches can be
considered similar. When each dissolution profile
of the test batch was compared with the mean of
the reference batch, all f2 values were higher than
50.

To achieve some insight into the within-batch
variability it is useful to check whether there are
profiles in the reference batch, which are different
from the rest. Using the leave-one-out (LOO)
principle, the first dissolution profile of the refer-
ence batch is tested against the mean of the
remaining dissolution profiles of the reference
batch. This is repeated for each profile in the
reference batch. Computed in this way only
profile 8 of Ar1 has a f2 value lower than 50,
namely 40. It can be seen in Fig. 1 that the eighth
dissolution profile of the reference batch, indi-
cated by the (�) symbol, is parallel with the other
profiles of the reference batch, but that its per-
centage dissolved is systematically lower. The out-
lier can indicate a lack of robustness of the
dissolution method or the manufacturing method

of the dosage forms. When object 8 is removed
and the LOO procedure is repeated, the mean of
the reference batch is changed but all dissolution
profiles of the reformulation batch still have f2

values higher than 50.
All f2 values, calculated by the LOO principle,

for the different dissolution profiles of Br1 were
larger than 50. Profile 9 has the lowest value: 51.
It can be seen in Fig. 2 that for the ninth dissolu-
tion profile, indicated by the (*) symbol, the per-
centage dissolved is systematically lower than for
the other profiles.

4.2. Hotelling’s T2 test to detect outliers

Hotelling’s T2 test using b-limits (Tracy et al.,
1992) was also used to detect outliers from the
reference batch. As shown in Fig. 3, no outliers
are detected in the training set Ar1 (a=0.01).
Objects 3 and 5 were found to be the worst
correlated with the other curves of the reference
set. Further analysis of these two profiles revealed
that this is only due to some small anomalies in
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Fig. 3. Hotelling’s T2 test using the original variables for the dissolution profiles of the reference batch (Ar1).

the horizontal part of the curves (last two time
points). On the other hand, object 8 which has a
lower, but parallel profile compared with the
other ones, is not detected as an outlier. In refer-
ence set Br1 too, no object is detected as an
outlier (a=0.05) although object 9, indicated by
the (*) symbol in Fig. 2, has a systematically
lower profile. Dissolution curve 2, indicated by
the (�) symbol in Fig. 2, is found to be the worst
correlated. It can be concluded that Hotelling’s T2

test is not practically useful for the detection of
outlying dissolution profiles because it is not sen-
sitive enough to differences in the level of the
curves and too sensitive to small deviations of the
correlation.

4.3. Principal component analysis

The reference and test batches were compared
with each other using PCA after column centring.
The PC space was constructed using the reference
batch and the test batch was projected in that
space. Fig. 4 shows the PC1/PC2 scores plot of
the dissolution curves of Ar1 and At1. This figure

can be interpreted as follows: from the left to the
right (along PC1) the level of the dissolution
profiles increases. This is also reflected in the
AUCs reported in Table 1. Fig. 4 shows that

Fig. 4. The PCA scores plots of the dissolution profiles of the
reference batch Ar1 (.) together with the projections of the
dissolution profiles of the reformulation batch At1 (*). The
contribution (%) of each PC is also indicated.
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Table 1
Areas under the curve (AUC, % min) for batches Ar1, At1,
Br1, Bt1

Profile Ar1 At1 Br1 Bt1

46581 42 1504558 39 000
4593 40 710 40 7102 4883
4499 39 2104889 39 5703

50634 4978 41 760 39 030
4785 39 8705 39 4804738
4667 39 7504358 42 5106

50677 4460 39 390 40 290
4772 38 1908 39 9003977
4382 34 380 40 7709 4352

4910 456710 39 150 40 800
11 5058 5198 39 810 41 730

4962 512412 39 060 41 580

percentage dissolution is systematically lower.
Along PC2, differences in the shape of the disso-
lution curves can be detected. Objects 2 and 7 of
the reformulation batch At1 have much higher
scores than the objects of the reference batch. In
Fig. 1 the dissolution profiles of the second and
seventh reformulated capsules (At1) were plotted
together with the dissolution profiles of the refer-
ence batch (Ar1). It can be seen that, compared
with the dissolution profiles of the reference
batch, at 10 min these profiles have a relatively
low dissolution, while at 60 min their dissolution
is relatively high. To investigate whether the ob-
served differences between the reference and re-
formulated batches are not just due to the
batch-to-batch variation, the dissolution profiles
of the two reference batches (Ar1 and Ar2) were
analysed together. The two reference batches
overlap well on the different PCs, indicating that
the between-batch variation is small. The two
reformulated batches (At1 and At2) were pro-
jected in that PC space as shown in Fig. 5.

along PC1 object 8 of the reference batch is
located far away from the other objects of that
batch. As already described, the eighth dissolution
profile of reference batch Ar1 is parallel with the
other objects of the set, but at each time point, the

Fig. 5. The scores plots after PCA of the dissolution profiles of the two reference batches (.1–12 (Ar1) and .13–24 (Ar2)) together
with the projections of the dissolution profiles of the two reformulation batches (*1–12 (At1) and *13–24 (At2)). The contribution
(%) of each PC is also indicated.
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Fig. 6. The PCA scores plots of the dissolution profiles of the reference batch Br1 (.) together with the projections of the dissolution
profiles of the test batch Bt1 (*). The symbol (%) expresses the contribution of each PC.

Analysis of the batches Br1 and Bt1 by PCA,
showed that the level of the ninth dissolution
profile of the reference batch Br1 differs from the
other along PC1 (Fig. 6). The scores along PC1
correspond to the AUCs given in Table 1. Along
PC2 object 2 of Br1 has much higher scores than
the other objects of that batch. In Fig. 2, it can be
seen that the second dissolution profile has a
different shape compared with others.

Fig. 6 shows that the general shape of the
dissolution profiles of batch Bt1 is clearly differ-
ent from that of batch Br1.

4.4. Construction of the confidence limits using
bootstrapping

To be able to reach a statistically based conclu-
sion, the distribution of the f2 factor is simulated
using the resampling with replacement or boot-
strap method as described in Section 2.5. The
resampling with replacement technique was ap-
plied to both the reference and the test batch.
Using the two (n×p) matrices of the column

means vectors, n f2 factors are calculated by com-
paring the corresponding rows. A 95% lower
confidence limit (LCL) is constructed by sorting
the n f2 values and omitting the lower 5% (i.e. 50
values). A robust distribution is obtained for n=
1000. For batches Ar1 and At1, the 95% LCL
amounts to 64.5 and for batches Br1 and Bt1 to
59.8. For both data A and B, the 95% LCL is
higher than the similarity criterion of 50 so that
the batches Ar1–At1 and Br1–Bt1 can be ac-
cepted as similar.

The resampling with replacement technique fol-
lowed by PCA on the (n×p) matrix of the
column means vectors can be used to simulate the
distribution of the scores in the PC space. For
n=1000, this yields a normalised scores plot for
the reference batch (Ar1) together with the projec-
tions of the dissolution profiles of the reformu-
lated batch (At1) as shown in Fig. 7. A 95%
confidence limit (CL) for the reference batch can
be calculated using Hotelling’s T2 test for two
PCs. For each of the 1000 column mean vectors
obtained, the T2 value was computed. After sort-
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ing these values, the upper 50 (5%) were omitted.
This is also shown in Fig. 7 where the 95% CL is
indicated by the circle. As can be seen, there is
only little overlap between the two batches. Since
there are nearly no differences along PC1, the
level of the batches can be considered to be equal,
but along PC2 it can be seen that a difference in
shape is noticed. Although the latter is somewhat
exaggerated, the assessments obtained with the
PCA/bootstrap technique conform to what is
shown in Fig. 1.

The same was done for the reference (Br1) and
the reformulated batch (Bt1) as shown in Fig. 8.
As can be seen, there is no overlap between the
two batches. The slight difference along PC1 indi-
cates that the level of the two batches is nearly
equal. However, along PC2 a considerable differ-
ence can be observed which means that the shape
of the profiles of the two batches is different. Here
too the difference in shape is probably somewhat
overinterpreted, but in general the conclusions
agree with the mean profiles shown in Fig. 2 and
with the results of Fig. 6.

Fig. 8. The PCA normalised scores plots after resampling with
replacement (n=1000) for the reference batch Br1 (.) together
with the projections of the dissolution profiles of the reformu-
lation batch Bt1 (*). The 95% confidence limit for the refer-
ence batch is indicated by the circle and the 5% omitted
objects are indicated by ( ). The contribution (%) of each PC
is also indicated

Fig. 7. The PCA normalised scores plots after resampling with
replacement (n=1000) for the reference batch Ar1 (.) together
with the projections of the dissolution profiles of the reformu-
lation batch At1 (*). The 95% confidence limit for the refer-
ence batch is indicated by the circle and the 5% omitted
objects are indicated by ( ). The contribution (%) of each PC
is also indicated.

4.5. Study of the limit of the similarity factor
(f2=50) by PCA

As mentioned in Section 2.1, the f2 limit value
of 50 was obtained by assuming a 10% average
difference at any measurement time point. For
four time points (as for batch Ar1), this means
that the sum of the squared differences in Eq. (1)
is 102+102+102+102=400. First, all 16 possi-
ble combinations with a + or −10% difference
in each of the four time points compared with the
mean of the reference batch (Ar1) were generated,
followed by the eight possibilities with a + or
−20% difference in one of the four time points.
After column centring, these 24 simulated curves
were projected in the PC space defined by the
reference set. Six of the 24 curves, corresponding
to profiles 1–6 in Table 2 and points 1–6 in Fig.
9, form the borderline. To examine the shape
(circle, hexagon, …) of this borderline, about 200
profiles (in the neighbourhood of and between the
above-mentioned six border points) were gener-
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Table 2
Percentage difference (%) of eight dissolution profiles (*1–8 in Fig. 9) at four time points, resulting in a f2=50 compared with the
mean of the reference batch (Ar1)a

% at 15 minProfile % at 30 min % at 45 min % at 60 min AUC

+10 +101 +10+10 5260
+102 +10−10 +10 4960

0 0−20 03 4435
−104 −10 −10 −10 4210
+105 −10 −10 −10 4510

0 0+20 06 5035
−10 −107 +10+10 4660

0 +20 00 50358

a The last column contains the areas under the curve (AUC, % min).

ated, all with a sum of squared differences equal
to 400 towards the mean of the reference batch
(Ar1). When those curves were projected in the
PC space built by the reference set, they were all
located in an area limited by a circle. Fig. 9 gives
an overview, showing the PC1/PC2 scores plot of
the 12 dissolution profiles of the reference batch
together with the limiting circle for dissolution
profiles with a f2=50. As can be seen, object 8 of
the reference batch Ar1 (.8) with a f2 value of 40,
calculated by LOO, is outside the circle. The six
points of the circle (*1–6) as well as *7 and *8
will be discussed more in detail. The percentage
differences for dissolution profiles *7 and *8 com-
pared with the mean of the reference batch are
also given in Table 2. Fig. 9 can be interpreted as
Figs. 6 and 8: PC1 indicates the level of the
dissolution profiles, which is also reflected in the
AUCs (Table 2) and along PC2 differences in the
shape of the dissolution curves can be detected.
Points *5 and *6 represent dissolution profiles
that start higher and end equal (*6) or lower (*5)
than the reference one. Points *1 and *4 have low
scores on PC2 since they correspond to curves
that are about parallel with the reference (10%
higher (*1) and 10% lower (*4)). Points *2 and *3
represent profiles that start lower and end higher
(*2) or equal (*3) than the reference curve. Points
*7 and *8 are examples of profiles with a f2 value
of 50 versus the reference set which do not lie on,
but inside the circle, which means that the differ-
ence in dissolution found in the f2 factor is not
fully reflected in the PC1/PC2 scores plot. The

dissolution curves corresponding to these two
points (see also Table 2) show irregularities like
going up, down and up again (*7) or a strongly
deviant percentage at one time point in the middle
(*8). Therefore, although these irregularities have
a strong influence on the f2 factor, they are filtered
out in the PC1/PC2 scores plot. They can, if one
wishes to, be detected by their high residual from
the PC1/PC2 model using methods such as
SIMCA (Wold and Sjöström, 1977).

Fig. 9. The PCA scores plots of the dissolution profiles of the
reference set Ar1 (.) together with the projections of some
simulated dissolution profiles with a f2 value of 50 (*), limited
by a circle. The contribution (%) of each PC is also indicated.
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Fig. 10. The PCA normalised scores plots after resampling
with replacement (n=1000) for the reference batch Ar1 (.)
together with the projections of the dissolution profiles of the
reformulation batch At1 (*) and the limiting ellipse for profiles
with a f2 value of 50.

a pharmaceutical point of view. An analogous
result was obtained for data B (Fig. 11).

5. Conclusion

The dissolution profiles from a batch of refor-
mulated capsules were compared with those of a
batch of reference tablets using the f2 factor and
PCA. Using the similarity factor f2, recommended
by the FDA, the reformulated dissolution profiles
are considered to be equal to the reference set.

Using PCA, the dissolution profiles with a sys-
tematically higher or lower percentage dissolution
at each time point can be recognised along PC1 in
the scores plot. Along PC2 the dissolution profiles
with a different shape can be seen. Although PCA
is a powerful tool to visually explore the dissolu-
tion data, it contains no decision criteria. This can
be achieved by combining PCA with the resam-
pling with replacement or bootstrap technique.

The study of dissolution curves with a f2 value
of 50 by PCA revealed that the similarity factor is
sensitive to irrelevant deviations, but that these
irregularities are filtered out in the PC1/PC2
scores plot. One can criticise the choice of the
10% average difference allowed between two
batches because this value is arbitrarily chosen
and should be useful for all types of tablets and
drugs. It might be preferable to set separate limits
for the level and the shape of the dissolution
curves. The separation between level and shape
can be performed using PCA.
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